91 research outputs found

    Gas Turbine Health State Determination: Methodology Approach and Field Application

    Get PDF
    A reduction of gas turbine maintenance costs, together with the increase in machine availability and the reduction of management costs, is usually expected when gas turbine preventive maintenance is performed in parallel to on-condition maintenance. However, on-condition maintenance requires up-to-date knowledge of the machine health state. The gas turbine health state can be determined by means of Gas Path Analysis (GPA) techniques, which allow the calculation of machine health state indices, starting from measurements taken on the machine. Since the GPA technique makes use of field measurements, the reliability of the diagnostic process also depends on measurement reliability. In this paper, a comprehensive approach for both the measurement validation and health state determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in a natural gas compression plant is presented

    Optimization of Load Allocation Strategy of a Multi-source Energy System by Means of Dynamic Programming

    Get PDF
    AbstractMulti-source systems for the fulfillment of electric, thermal and cooling demand of a building can be based on different technologies (e.g. solar photovoltaic, solar heating, cogeneration, heat pump, absorption chiller) which use renewable, partially renewable and fossil energy sources. The main issues of these kinds of multi-source systems are (i) the allocation strategy which allows the division of the energy demands among the various technologies and (ii) the proper sizing of each technology.Furthermore, these two issues proves to be deeply interrelated because, while a wiser energy demand allocation strategy can lead to significant reductions in primary energy consumption, the definition itself of an optimal allocation strategy strongly depends on the actual sizing of the employed technologies. Thus the problem of optimizing the sizing of each technology cannot be separated from the definition of an optimal control strategy. For this purpose a model of a multi-source energy system, previously developed and implemented in the Matlab® environment, has been considered. The model takes account of the load profiles for electricity, heating and cooling for a whole year and the performance of the energy systems are modelled through a systemic approach. A dynamic programming algorithm is therefore employed in order to obtain an optimal control strategy for the energy demand allocation during the winter period. While the resulting control strategy is non-causal and therefore not suitable for the implementation on a real-time application, it allows the definition of a benchmark on the maximum primary energy savings achievable with a specific sizing solution. This result is therefore very helpful both in comparing different solutions and in subsequently define a proper causal control strategy. Finally, the model is applied to the case of a thirteen-floors tower composed of a two-floor shopping mall at ground level and eleven floors used as offices

    An Interdisciplinary Approach to Study the Fouling Phenomenon

    Get PDF
    Abstract Solid particle ingestion is one of the principal degradation mechanisms in the compressor section of heavy-duty gas turbines. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading,which results in a severe drop in the performance of the compressor.Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of several studies in different research fields: (i) numerical simulation, (ii) power plant characteristicsand (iii) particle-adhesion characteristics.This paper shows the possibility of linking the numerical results related to the impact/adhesion characteristic of the particles with the actual air contamination data and operating condition of the power units. In fact, the size of the particles, their concentrations and the filtration efficiency represent the major contributors to performing a realistic quantitative analysis of the fouling phenomena in an axial compressor.The integration of these research fields could represent a valuable support for the investigation of the relationship between compressor airfoil design and fouling rate

    CFD Analysis of a Non-Newtonian Fluids Processing Pump

    Get PDF
    Abstract Pumps are among the most spread machines in industrial facilities. In this work a comparative CFD analysis using different software is presented. The three-dimensional flow in the semi-open impeller and volute of a centrifugal pump is numerically simulated. The main advantage of semi-open impeller centrifugal pump is its efficiency which can be considered constant thanks to the clearance adjustment. In addition this kind of impeller is less likely to clog with solid bodies (important in case of slurry-processing). The open impeller has all the parts visible, so it is easier to inspect for wear and damages. Eventually it is lighter than a shrouded impeller: it can spin faster. The stress due to centrifugal force is indeed a limit for the speed of this machines. On the other hand its main disadvantage if compared to a shrouded pump is its lower efficiency due to the heavier tip leakage. In addition it cannot be employed in case of explosive products: the risk of contact between impeller and volute causing sparks is not negligible. The simulations have been carried out using both open-source and proprietary software: OpenFOAM®, PumpLinx ® and ANSYS-CFX ®. The performance of the machine handling both Newtonian and non-Newtonian fluids are also investigated. The numerical models and the results of the different computational strategies were compared with the experimental data and the accuracy of different software is evaluated in the case of Newtonian model. It is well known that the performance of a centrifugal pump drops processing a viscous fluid. Even so the behavior during the pumping of non-Newtonian fluids has not been investigated so far. The non-Newtonian fluid processed is a shear-thinning fluid (the apparent viscosity decreases with an increase stress). The slurries which are usually processed in the food industries, chemical plants and oil&gas processes show a usual behavior which correspond to this kind of model

    Optimal design of a hybrid energy plant by accounting for the cumulative energy demand

    Get PDF
    In this paper, the optimal design of a hybrid energy plant composed of a solar thermal collector, a photovoltaic panel, a combined heat and power system, an absorption chiller, an air source heat pump, a ground source heat pump and a thermal energy storage is studied. The size of each technology is optimized by applying a model implemented in Matlab® environment. The optimization goal is the minimization of the primary energy consumed throughout the life cycle of the hybrid energy plant by using a genetic algorithm. The primary energy consumed during the manufacturing phase of the hybrid energy plant is represented by the cumulative energy demand and is calculated by carrying out a cradle to gate life cycle assessment. The primary energy consumed during the operation phase is evaluated by simulating the system throughout one year. The cumulative energy demand of each system composing the hybrid energy plant is calculated as a function of the technology size. Therefore, the problem of life cycle assessment scaling of renewable and non-renewable energy systems is also taken into account in this paper. A tower located in the north of Italy is selected as a case study and two different approaches are evaluated. The first approach consists of solving the sizing optimization problem by minimizing the primary energy consumption only during the operation phase, while in the second approach the primary energy consumption is minimized throughout the life cycle of the plant by integrating the life cycle assessment into the optimization process. The results show that, if life cycle assessment is accounted for, the optimal hybrid energy plant configuration is different and a higher primary energy saving (approximately 12%) is achieved

    METHODOLOGY FOR ESTIMATING BIOMASS ENERGY POTENTIAL AND ITS APPLICATION TO COLOMBIA

    Get PDF
    This paper presents a methodology to estimate the biomass energy potential and its associated uncertainty at a country level when quality and availability of data are limited. The current biomass energy potential in Colombia is assessed following the proposed methodology and results are compared to existing assessment studies. The proposed methodology is a bottom-up resource-focused approach with statistical analysis that uses a Monte Carlo algorithm to stochastically estimate the theoretical and the technical biomass energy potential. The paper also includes a proposed approach to quantify uncertainty combining a probabilistic propagation of uncertainty, a sensitivity analysis and a set of disaggregated sub-models to estimate reliability of predictions and reduce the associated uncertainty. Results predict a theoretical energy potential of 0.744 EJ and a technical potential of 0.059 EJ in 2010, which might account for 1.2% of the annual primary energy production (4.93 EJ)

    Experimental and Numerical Analysis of a Non-Newtonian Fluids Processing Pump

    Get PDF
    Abstract Centrifugal pumps are used in many applications in which non-Newtonian fluids are involved: food processing industry, pharmaceutical and oil/gas applications. In addition to pressure and temperature, the viscosity of a non-Newtonian fluid depends on the shear rate and usually is several orders of magnitude higher than water. High values of viscosity cause a derating of pump performance with respect to water. Nowadays, pumping and mixing non-Newtonian fluids is a matter of increasing interest, but there is still lack of a detailed analysis of the fluid-dynamic phenomena occurring within these machines. A specific design process should take into account these effects in order to define the proper pump geometry, able to operate with non-Newtonian fluids with specific characteristics. Only few approaches are available for correcting the pump performance based on the Hydraulic Institute method. In this work, an experimental and numerical campaign is presented for a semi–open impeller centrifugal pump elaborating non-Newtonian fluids. An on-purpose test bench was built and used to investigate the influence on pump performance of three different non-Newtonian fluids. Each pump performance test was accompanied by the rheological characterization of the fluid, in order to detect modifications of the rheological phenomena and allow a proper Computation Fluid Dynamics (CFD) modeling. The performance of the machine handling both Newtonian and non-Newtonian fluids are highlighted in relation with the internal flow field

    Italian real life experience with ibrutinib: Results of a large observational study on 77 relapsed/refractory mantle cell lymphoma

    Get PDF
    Although sometimes presenting as an indolent lymphoma, mantle cell lymphoma (MCL) is an aggressive disease, hardly curable with standard chemo-immunotherapy. Current approaches have greatly improved patients' outcomes, nevertheless the disease is still characterized by high relapse rates. Before approval by EMA, Italian patients with relapsed/refractory MCL were granted ibrutinib early access through a Named Patient Program (NPP). An observational, retrospective, multicenter study was conducted. Seventyseven heavily pretreated patients were enrolled. At the end of therapy there were 14 complete responses and 14 partial responses, leading to an overall response rate of 36.4%. At 40 months overall survival was 37.8% and progression free survival was 30%; disease free survival was 78.6% at 4 years: 11/14 patients are in continuous complete response with a median of 36 months of follow up. Hematological toxicities were manageable, and main extra-hematological toxicities were diarrhea (9.4%) and lung infections (9.0%). Overall, 4 (5.2%) atrial fibrillations and 3 (3.9%) hemorrhagic syndromes occurred. In conclusions, thrombocytopenia, diarrhea and lung infections are the relevant adverse events to be clinically focused on; regarding effectiveness, ibrutinib is confirmed to be a valid option for refractory/relapsed MCL also in a clinical setting mimicking the real world
    • …
    corecore